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ABSTRACT

To realize design concepts, predict dynamic behavior and develop appropriate control
strategies for high performance operation of a solar-sail spacecraft, we developed a simple
analytical model that represents dynamic behavior of spacecraft with various sizes. Since motion
of the vehicle is dominated by retractable booms that support the structure, our study
concentrates on developing and validating a dynamic model of a long retractable boom.
Extensive tests with various configurations were conducted for the 30 Meter, light-weight,
retractable, lattice boom at NASA MSFC that is structurally and dynamically similar to those of a
solar-sail spacecraft currently under construction. Experimental data were then compared with
the corresponding response of the analytical model. Though mixed results were obtained, the
analytical model emulates several key characteristics of the boom. The paper concludes with a
detailed discussion of issues observed during the study.

INTRODUCTION

Solar sails offer a safe, cost effective and propellant free mode of space transportation.
These spacecraft are propelled by momentum gained when photons are absorbed and/or
reflected from its large membranes. Ideally these membranes should be perfectly flat, to
maximize thrust magnitude and optimize thrust vector control. For square solar sails, long light-
weight coilable booms are needed to support the tensioned membranes in the same way long
thin rods support a kite's fabric. Due to their light weight and long length, these booms will be
highly flexible and lightly damped. When disturbed, they will respond with large amplitude slowly
decaying vibration. This will lead to a loss of membrane flatness and deterioration of overall
performance of the space vehicle. To realize the design concepts, predict dynamic behavior of
the system and develop appropriate control strategies for high performance operation of the
vehicle, accurate analytical models and model parameters are required. Therefore, the primary
question we ask in this study is: can the dynamic behavior of an extremely large, typically 100
Meter by 100 Meter, square, solar-sail spacecraft be predicted by a standard linear scalable
mathematical model? Since we expect vehicle motion will be dominated by dynamics of its
booms, we limit our study to boom dynamics only.

It is known that lattice booms are well suited to providing structural strength to a solar-sail
spacecraft for several reasons. Some of these reasons are: (1) their high strength-to-weight and
length-to-diameter ratios, and (2) their ability to collapse to a small length/volume and
subsequently deploy to much larger lengths/volumes. These durable, lightweight, open lattice
structures can be retracted (by elastically coiling longerons to assume a flattened, helical
configuration) into storage volumes with lengths of about 2% of deployed length. Once retracted
they are easily stored/transported. Furthermore, availability of an ultra-lightweight space
deployable 30 Meter boom at MSFC with structural properties of booms that can be used for
solar-sail spacecraft enables us to perform this study.
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Mathematical models representing its static and dynamic characteristic behavior are
derived and validated using experimental data from a 30 Meter long ABLE boom. The boom will
operate in a zero gravity environment but tests will be performed in a one-g environment.
Accordingly, the analytical models explicitly account for gravity in a manner that allows us to
validate the model in a one-g environment and subsequently derive a zero-g model. Though
model validation results were mixed, our results generally suggest that simple analytical models
can account for the static and dynamic behavior of ABLE Lattice booms at long lengths.

The paper is organized as follows. In the specifications of the boom section, the boom
description, dimensions and properties are discussed. This is followed by the experimental setup
section which describes tests and test configuration. The beam parameters section provides
parameters required to complete the analytical models. Due to the significance of bending
stiffness and a variety of issues associated with it, the bending stiffness determination section is
provided next. This is followed by the mathematical models section that contains models for
bending and torsion along with all necessary assumptions. In the data analysis section, analysis
obtained from comparing the response of models with experimental data is given. The paper is
concluded with a discussion section and some remarks.

EXPERIMENTAL SETUP

The boom that was tested is a canister deployed boom capable of fully automatic
deployment/retraction. Canister deployed booms are motor-driven, and the boom is extruded
from an internally-threaded canister shell. A beneficial feature of these booms is the fact that
near full stiffness and strength is achieved throughout the deployment phase''". The tested
Mast/Canister system is a canister deployed boom that has been flown aboard the challenger
space shuttle and subsequently deployed in space in 1984. Afterwards, it was modified for
CASES ground tests®.

As in Figure 1, the free end of the beam has a stiffener section (tip-bars) and the tip ring
was removed for bending tests. However, the Tip-Ring was reinstalled to apply torsional forces
for torsional tests. At the center of the tip-ring assembly is a bearing that prevents transverse
motion in x and y directions but permits z axis rotary motion. The resulting arrangement for
torsional tests is illustrated in Figure 1.

Figure 1. Tip Image With Tip Ring Figure 2. Longeron Clamps

In addition to the above modifications, the mast was further modified for this study by
retrofitting a longeron clamp to impose a clamped condition at the canister/mast interface as
shown in Figure 2.

OVERVIEW

Experiments were carried out to obtain static bending stiffness data, static torsional
stiffness data, and bending/torsional modal data at mast lengths L=10 (M), L=22.5(M), and
L=30(M), with constant loading cable tensions (see Figure 3) at T, =0 Ib, 5 Ib, and10 (Ib). From



this test data, one can identify natural frequencies, mode shapes, and damping ratios that
represent the dynamic behavior of the system. To minimize gravity effects, the boom was
supported such that its longitudinal (z) axis is vertical at rest.

BOUNDARY CONDITIONS

As shown in Figure 2, clamps were installed between the motorized canister that holds the
retractable boom and each longeron to force boundary conditions of the mast to be close to those
of the booms of a typical solar-sail spacecraft. Accordingly, clamped-free boundary conditions,
little-or-no tip mass and axial tension due to cables attached at approximately 45° to the
longtitidinal axis at the interface between the stiffener section and the mast (see Figure 3) of a
solar-sail mast were approximated.
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Figure 3. Axial Loading Configuration
ATTACHED INSTRUMENTS
Displacement

In all cases, displacement was measured at (4 or 8) measurement points distributed
along the longeron to which the transverse bending forces were applied. Displacement sensors
included Spring Return DC Position Sensors, also known as Linear Variable Differential
Transformer (LVDT) Displacement Transducers and Ultrasonic Displacement sensors also known
as UDI sensors. Displacement sensors were set up to measure beam displacement in the y-axis
direction. For torsion tests, a pair of LVDT sensors measured angular rotation of the tip-ring.

Acceleration

Similarly, bi-axial accelerometers were used to measure x and y axis accelerations in
response to y-axis forces or z-axis torques applied at the beam tip. Accordingly, these
accelerometers were attached at roughly the same sensor locations as the displacement sensors.
In addition, a tri-axial accelerometer, was installed on the longitudinal axis at the interface
between the mast and stiffener section. This accelerometer is oriented to measure accelerations
in the x, y and z axis direction at its location.



BENDING TESTS
Static Linear Displacement Tests

Static Stiffness data was obtained by recording y-axis displacement at multiple points on
the mast as a constant transverse force, with multiple steps of varying magnitude, was applied to
the beam tip in the y-axis direction. Direction of the force was reversed and the test was
repeated. In each case input/output data was recorded. Output data was linear displacement in
the y-axis direction at multiple points (including the tip) along the beam. This test was performed
at 10(M), 22.5(M) and 30(M) deployment lengths without any externally induced axial loads. At
the 22.5(M) deployment length, the test was repeated when axial loads were applied to the beam
via two “loading cables” each of which had 5(Ib) or 10(Ib) tension T,. Data from these tests were
used to estimate bending stiffness El.

Cut-Wire Tests

These tests are designed to capture dynamic response of the beam to an initial, linear,
static displacement. This is achieved by attaching a wire to the beam tip, and pulling the wire in
the y axis direction to induce a displacement at the beam tip. This displacement was preserved
by maintaining a constant tension in the wire. Consequently, the beam has a fixed initial
deflection. After the beam stabilized, the wire was suddenly cut causing the beam to vibrate.
Time history of cable tension and beam response (displacement and acceleration) at sensor
points was recorded.

Impact Tests

A tuned impact hammer was used to strike the beam in the y-axis direction at the
stiffener section. Response (y-axis acceleration) of the beam at the measurement points were
recorded and used for modal analysis. Several data sets were collected.

TORSION TESTS

Unlike bending tests, the tip ring was added to the free end of the stiffener section to
facilitate application of torsional loads and measurement of angular response. As described
earlier, the tip ring constrained the beam tip to pure z-axis rotation (see Figure 2).

Static Angular Displacement Tests

Static stiffness data was obtained by recording z-axis angular displacement at the tip-ring
as a constant z-axis torque, with multiple steps of varying magnitude, was applied to the tip ring.
Torque direction was reversed and the test was repeated. In each case input/output data was
recorded. Output/response data was z-axis angular displacement at the beam tip. This test was
performed at the 30(M) deployment length without any externally induced axial loads. Data from
these tests was used to estimate torsional stiffness GJ.

Cut-Wire Tests

Similar to the bending test case, this is achieved by attaching a wire to the tip-ring, and
pulling the wire to induce a z-axis torque at the beam tip. This displacement was maintained by
keeping a constant tension in the wire. Consequently, the beam had a fixed initial angular
deflection. Once the beam stabilized, the wire was suddenly cut which caused angular beam
vibrations. Time history data of the cable tension and beam response (displacement and
acceleration) at sensor points were recorded.

Impact Tests

A tuned impact hammer was used to strike the beam at the stiffener section in a direction
that induces a z-axis torque. Response (z-axis angular acceleration) of the beam was measured
and used for modal analysis. Since the Bi-axial accelerometers are offset from the neutral (z)
axis, they measure radial and tangential acceleration along the beam. Consequently, they were
used to estimate the z axis (angular) acceleration induced by the impact hammer.



BEAM PARAMETERS

In this section, we state parameters required to complete mathematical models provided
in the next section. These parameters include mass-per-unit-length for the beam and tip-ring,
buckling load, and maximum permissible tension in cables for applying axial load. For easy
reference, these parameters are tabulated in Table 1.

Table 1. Summary of Parameters

Mast (beam excluding stiffener section & tip ring)
Axial Length 1181.5 (in)
Bending Stiffness £/ 19.87x10° (Ib.in%)
Torsional Stiffness GJ 4.36x10° (Ib.in%)

Stiffener Section (between mast and tip ting): Axial Length 15.5 (in)

Tip Ring: Axial Length 7/8 (in)

BENDING STIFFNESS, El, DETERMINATION

We assume the boom has a constant stiffness, El, that is independent of beam length.
Such a constant bending stiffness was provided by ABLE and is shown in Table 1. In this section,
experimental verification of the constant bending stiffness is attempted. Verification of constant
stiffness, El, is done by analytically computing E/ values at different deployed lengths from sets of
static test data. Each test data set represents the transverse deflection profile of the boom for a
specific transverse tip force. Transverse force was gradually increased and decreased in steps to
collect the entire data set. There were a total of 18-42 good data sets depending on the
configuration. Unlike mathematical models, the experimental data can be significantly influenced
by gravity and it prevents a computation of the correct El value of long (or heavy) structures. Thus,
we developed a formula to accommodate this. Throughout this paper, we make the following
standing assumptions.

Assumption 1:
1. Boom has a uniform mass stiffness, i.e. m(s)=m and El(s)=El respectively.
2. Perfectly straight beam.
3. External forces and moments do not induce any torsional effects.
The standard formula to compute El under zero gravity assumption is:

FL)-I
pro = 2O L
3-y(L)

It is expected that experimental data collected from static tests will be distorted by gravity.
This gravity influenced test data will certainly affect EI values estimated using eq. (1). Thus, we
developed a new formula that accounts for the case where axial and gravity loads exist.
Assuming that the axial load considered here is due to a constant vertical force, T(L), acting at
the beam tip pointing in the positive s-direction and the beam profile may be approximated by a
3rd order polynomial

(1)

y(s)=c, +c,5+c,5° +c,s° (2)

of the spatial coordinate s € [0, L], ¢,k =01,2,3 are known coefficients and y(s) represents
the boom profile represented by experimental data, the standard stiffness formula is modified to®,

3
EI® = -;—[F(L)-L—T(L)')’(L)—m' gZ%] \8)

e, k=1



At each length, 18-45 El values were computed depending on numbers of available sets of data.
The following table shows average values for each length.

COMPARISON OF EI VALUES
Table 2. Average Bending Stiffness Values (No-Axial Load Applied)

Boom Length (Meters)

El™ (Newton.Meter)

EI™ (Newton.Meter)

L=10 4.5428x10° 3.5262x10*
L=22.5 7.9643x10° 5.8976x10"
L=30 1.2363x10° 1.0239x10°

Remark: Bending stiffness E/ values computed at a fixed length are scattered in a range.
Furthermore, El values estimated at each length do not always lie in the same range of values.
We are therefore unable to trust E/ values estimated from static test data. Interestingly, the single
El value provided by ABLE, is close to the estimated E/ values at 10(M) and 22.5(M) deployment
lengths. Therefore, in the rest of the analysis, we assumed the boom has a constant and uniform
El value that is equal to the El value of 5.7020x10* (N.M) provided by ABLE.

MATHEMATICAL MODELS
Assumption 2

1. Cross-sectional dimensions are small compared to beam length. Note that shear and rotary
inertia effects can be neglected under this assumption®. However, these effects become
significant as mode number increases®.

2
d
2. Small bending deformations, specifically: (d_y) <<1.
s

3. The beam is stiff in the axial direction, so length change due to axial forces is negligible.
EQUATION OF MOTION: BENDING
We considered a beam clamped at one end and free at the other end and derived equations of

transverse motion y(s,?)in response to applied forces and moments. At rest, the beam is

vertical to minimize gravity effects and thereby simulate the zero gravity effects of space. Note
that we assumed the beam is uniform and lacks a tip-mass in bending motion. The beam under
investigation assumes there is no axial motion and its equation of motion is®,

0’ 0? 0? 9’y 0 0°
a—sz—l:EI?Z} —T(L)ﬁ+mg((s -~ L) asz +§};—) +m§5}i =w(s,?).

Note that if T(L)=w(s,t)=0, the expression above corresponds to “case 2" of the Rakoczy model°.

(4)

We used admissible functions in our analysis because of difficulties computing the
analytical mode shape functions @;(s). The admissible functions are the mode shape functions

of the classical Euler-Bernoulli Beam, i.e:
u,;(s) =c,;sin(B;s) +c,; cos(f;s) + c3; sinh(f;s) +c,; cosh(f;s) (5)

where £, and Cij» C2j» C3js Cqjs Jj =1,23,... are computed from boundary conditions.

TORSION MODEL WITH TIP MASS
Assumption 2: Torsional stiffness of the beam is uniform (i.e GJ(s)=GJ with known GJ).




A mathematical model depicting the beam in torsion is standard and is provided below.
Let M(s,t) denote a distributed external torque, &(s,?) angular rotation, G shear modulus, J(s) a

geometric property, GJ torsional stiffness and /(s) mass polar moment of inertia per unit length of
the beam. The differential equation of motion is®

9%6(s,1) —i[GJ 96(s,1)

1(s) % s ——J =M (s,1) (6)

os

while the j"" mode shape function ¢, is,

¢, =c;sin(f;s). (7)
DATA ANALYSIS

The data analysis consists of using the mathematical model to predict (1) natural frequencies and
(2) mode shapes of the first three modes. The analysis is completed by comparing these
predicted natural frequencies and mode shapes with those measured from experimental data for
a corresponding configuration (deployment length and axial load). This analysis is repeated for
every test configuration.

DATA ANALYSIS: BENDING MOTION

From the impulse response due to the transverse forces induced by the impact hammer,
the modal parameters, the corresponding natural frequencies predicted by the mathematical
model (Table 3), and the damping ratios from the impact tests (Table 4) are tabulated below.

Table 3. Experimentally Obtained/Model Predicted Natural Frequencies

Experimentally Obtained Model Predicted
L T. fi(Hz) | f2(Hz) | f3(Hz) F; fo(Hz) | f3(Hz2)
(Meters) | (Ib) (Hz)
10 0 1.0990 | 6.3965 | N/A 1.3454 | 8.2999 | 22.9846
225 0 0.2819 | 1.5602 | 3.7780 0.3155 | 1.6825 | 4.7204
22,5 5 0.5574 | 1.6124 | N/A 0.3047 | 1.6671 | 4.7074
225 10 0.7030 | 1.6175 [ N/Av 0.2932 | 1.6515 | 4.6944
30 0 0.2180 | 0.9260 | 2.4300 0.2123 | 0.9582 | 2.7014
30 5 0.3452 | 0.9549 | 2.4952 0.2043 | 0.9424 | 2.6883
30 10 0.4187 | 0.9846 | 2.4547 0.1959 | 0.9263 | 2.6752

Table 4. Damping Ratios Obtained from Experimental Data for Bending Motion

L (Meters) | T (Ib) | & (H2) | &2 (H2) | G (H2)
10 0 0.0125 [ 0.0343 | N/A
22.5 0 0.0141 [0.0142 |0.0388
225 5 0.0114 | 0.0119 | N/A
225 10 | 0.0068 | 0.0190 | N/A
30 0 0. 0420 | 0.0160 | 0.0250
30 5 0.0081 | 0.0110 | 0.0160
30 10 | 0.0126 | 0.0133 | 0.0226




Figures 4-10 compares model predicted mode shape and mode shape reconstructed from
experimental data. Our analysis is limited to the first three modes because they account for most
of the beams vibration motion. Note that sometimes, no reliable data was available to construct
the mode shape of the third mode. These figures show that the predictions are reasonably
accurate.
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Figure 4. 10 Meter Test with 0 Ib cable tension
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Figure 5. 22.5 Meter Test with 0 Ib cable tension
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Figure 6. 22.5 Meter Test with 5 Ib cable tension
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Figure 7. 22.5 Meter Test with 10 Ib cable tension



30 Meter test with O Ib cable tension: Mode 1 30 Meter test with O Ib cable tension: Mode 2 30 Meter test with O Ib cable tension: Mode 3
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Figure 8. 30 Meter Test with 0 Ib cable tension
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Figure 10. 30 Meter Test with 10 Ib cable tension

We pay particular attention to Figures 11 and 12 which depict the changes of mode
shapes with regard to different tension load being applied. As expected, the mode shapes of the
mathematical models show resilient behavior with respect to the changes of tension load.
However, notable changes are shown in mode shapes constructed from the experimental data.
Further discussion will be given in the next section.

b.04505,10:L = 22,50, Tip-Load = [0, 5, 1015, Mode = 3

22.5 Meter lest wilh 0, 5, 10 Ib cable lension: Mode 1 22.5 Meter test with 0, 5, 10 Ib cable tension: Mode 2
o > S e et RO e e

-01

7 L GREE

10 15 10 15 -
s-Position (Meter) s-Position (Meter) U a Y oo M;j

Figure 11. 22.5 Meter Test with 0, 5, 10 Ib cable tension
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Figure 12. 30 Meter Test with 0, 5, 10 Ib cable tension
DATA ANALYSIS: TORSIONAL MOTION

The Natural frequencies predicted by the mathematical model are provided below.

Table 6. Model Predicted Natural Frequencies for Torsional Motion
Length L (Meters) | Cable Tension T, (Ib) | f; (Hz) | fo(Hz) | f3(Hz)
30 0 1.6934 | 5.0803 | 8.4672

Unfortunately, the corresponding experimental torsional natural frequencies and mode
shapes are not available due to the inability to obtain reliable torsional data. This issue will be
discussed further in the next section. Consequently, the natural frequencies of the mathematical
model in Table 6, and the corresponding mode shapes (not shown) cannot be validated.

Despite the failure to obtain mode shape functions from the torsion data collected, FRF
data obtained from z-axis torque (input) at the free (for rotation) end plus z-axis acceleration
(output at the free end) was adequate for some crude analysis. FRF data from the modal
analysis was compared with FRF data from the mathematical model. These two FRFs are
depicted in Figure 12. A crude estimate of the first three natural frequencies was made as
follows. The frequencies at which the first three magnitude peaks (accompanied by 180° (deg)
Phase shifts) occur was determined visually. These crude natural frequency estimates are
provided in Table 7.

Table 7. Rough Estimates of Experimental Natural Frequencies for Angular Vibration
Length L (Meters) | Cable Tension T, (Ib) | f; (Hz) | f2(Hz) | f3(Hz)
30 0 1.91 5.64 |9.38

FRFs: Tip—Accel/Tip—Force: L = 30 M, Tip—-Load =0 Lb
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Figure 13. Torsion: Experimental and Mathematical Model FRFs



DISCUSSION

In this section, we discuss some of the issues raised during the data analysis including
reliability of the data due to limitations of the experimental setup.

EXPERIMENTAL SETUP

1. The 30 meter boom under study is not perfectly straight and has a slight “bow". This causes
an inevitable coupling between bending and torsion motions. Consequently, the “bow" in our
boom guarantees that Torsion and Bending modes will always be coupled.? However, the
study assumes the boom is perfectly straight and bending and torsion motions are completely
decoupled. The mathematical models we developed are based on this assumption.

2. As described earlier, the boom has a stiffener section (see Figure 2) at the end. Since we
assume the boom is long and slender, we expect the effect of the stiffener section becomes
insignificant as the length of the boom increases.

BENDING STIFFNESS VALUE

Based on the literature provided by ABLE (manufacturer of the boom under
consideration), we assumed the boom has a uniform stiffness. In fact, the entire analysis
performed here is based on a mathematical model with the constant stiffness value provided by
ABLE. Initially, attempts were made to verify this central assumption from static test data sets
obtained from experiments. As discussed in the bending stiffness determination section, a
conclusive verification was not achieved. Some of the observations made from our analysis of
the experimental data are:

1. The standard formula in eq. (1) was problematic when it utilized static test data that was
significantly influenced by gravity. Consequently, the El values computed with this formula
increased as the length increases as shown in Table 2. Since the formula in eq. (1) assumes
zero gravity condition and the gravity effects on the data is increasing as the length of the
boom increases, the constant/accurate E/ cannot be obtained if such gravity influences on
the apparent stiffness is large.

2. A new formula was derived to mathematically remove gravity influences from the static test
data. As shown in Table 2, the results show that the constant/accurate E/ was still not
attainable from the static test data even after removing gravity effects. Therefore, we failed to
experimentally verify the primary assumption we made based on ABLE's literature.

MODE SHAPE FUNCTIONS

Comparing mode shape functions predicted by the mathematical model against mode
shapes reconstructed from experimental data, we observed the following.

1. Mathematically predicted mode shape functions generally agree with experimental shapes.

2. Modal analysis of experimental data often failed to identify higher modes. As a result, some
test configurations lack a third mode for data analysis.

3. The modal analysis also had difficulty identifying any torsional modes from experimental
data.. As a result, data analysis for torsional motion was done only with the mathematical
model and was therefore limited.

4. ltis well known that natural frequency should decrease with an increase in compressive load.
This trend was observed in our mathematical model as shown in Table 4. However, the
experimental data generally showed the opposite trend. Such an unreasonable phenomena
may indicate inaccuracy of the test data.

5. The difference between natural frequencies predicted by the mathematical model and natural
frequencies measured from experimental data generally reduced as the boom length
increased. This is an expected outcome because the beam should become a slender beam
(as assumed in the mathematical model) as it's length increases. Also, the effects of the
unmodeled stiffener section should become less significant as length increases.



EFFECTS OF AXIAL LOADS ON MODE SHAPE FUNCTIONS

Mode shapes of a clamped free beam are a function of axial Ioad but the change in mode shape
produced by a large change in axial load is generally very small’. Consequently, we expected the
mode shapes predicted by our mathematical model and mode shapes estimated from
experimental data would both show insignificant changes to small (compared to buckling load)
axial load changes. As expected, mode shapes predicted by the mathematical models hardly
changed with axial load. However, experimental mode shapes changed significantly for relatively
small axial loads. Unfortunately, a thorough investigation of the cause(s) of this discrepancy will
require additional experiments and mathematical analysis that are beyond the scope of our study.
In the absence of this, two likely sources of this anomaly are suggested below.

The beam contains a significant bow (global deformation) that is visible to the naked eye when
the boom is in an unloaded state. Consequently, the bending and torsional vibration modes will
always be coupled Therefore, the vibration modes determined from transverse vibration data
are actually a combination of bending modes coupled with angular motion. As a result, the
apparent change in the experimental transverse mode shapes with axial tension may be due to
coupling effects. On the other hand, the mathematical model assumes a perfectly straight beam
and is therefore free of coupling effects.

At short Iengths a coilable boom is generally a very predictable and readilly modelled linear
structure’. However, ultra light weight booms with long lengths are particularly susceptlble to
stiffness and therefore strength reduction due to local longeron and global mast waviness®’

However, our mathematical mode shape functions were derived assuming the beam is
perfectly straight, and its bending stiffness is uniform and constant. Therefore, the existence of a
significant bow invalidates this assumption. In fact, our inability to determine a constant and
uniform stiffness E/ value from static test data may actually be due to the effects of local/global
stiffness changes caused by an imperfectly straight boom.

NATURAL FREQUENCIES

1. As stated earlier, the boom was assumed to be uniform for the bending model. However, we
know the boom was much stiffer and much heavier at the last two bays. From simple math
models of the first frequency of a beam with a tip mass, we know that the mass of the tip
mass has a much more significant effect on the first mode frequency than the mass of the
entire boom?. This may explain the large discrepancy between the experimental and math
model first mode frequency.

2. Pure Torsion Mode shapes and frequencies could not be determined from experimental data
because of the coupling between the Torsion and Bending Modes.

CONCLUDING REMARKS

The question we asked in this study was: can the dynamic behavior of an extremely large
solar-sail spacecraft be predicted by a standard scalable mathematical model? We attempted to
answer the question by validating the mathematical model against data collected from
experiments conducted on a 30 (Meter) boom in various lengths. As we discussed above, the
results are not definitive and conclusive. However, evidence generally suggests that simple
linear-time invariant mathematical models can predict dynamic behavior of a long boom that is
similar to the one used in this study. It seems that most of the mismatches are due to inability of
the experimental environment to satisfy some of the assumptions made in developing theoretical
models. Although some of these assumptions are expected to be satisfied more closely in real
flight conditions (zero gravity, much longer booms, etc.), one of the most critical questions to be
asked may be whether a boom satisfies the perfectly straight beam assumption.

Depending on degree of waviness, one may have to drop this assumption and develop
complicated models that represent coupling between bending and torsional motion. In any case,



some form of robust control to overcome the difference between analytical models and the
physical structures will be necessary.
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